View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Antenna-in-Package and transmit–receive switch for single-chip radio transceivers of differential architecture

      Thumbnail
      Antenna-in-Package and Transmit–Receive Switch for Single-Chip Radio Transceivers of Differential Architecture.pdf (1.480Mb)
      Author
      Zhang, Yue Ping
      Wang, Jun Jun
      Li, Qiang
      Li, Xue Jun
      Date of Issue
      2008
      School
      School of Electrical and Electronic Engineering
      Version
      Published version
      Abstract
      A fully differential architecture from the antenna to the integrated circuit is proposed for radio transceivers in this paper. The physical implementation of the architecture into truly single-chip radio transceivers is described for the first time. Two key building blocks, the differential antenna and the differential transmit-receive (T-R) switch, were designed, fabricated, and tested. The differential antenna implemented in a package in low-temperature cofired-ceramic technology achieved impedance bandwidth of 2%, radiation efficiency of 84%, and gain of 3.2 dBi at 5.425 GHz in a size of 15 x 15 x 1.6 mm3. The differential T-R switch in a standard complementary metal-oxide-semiconductor technology achieved 1.8-dB insertion loss, 15-dB isolation, and 15-dBm 1-dB power compression point (P 1dB) without using additional techniques to enhance the linearity at 5.425 GHz in a die area of 60 x 40 µm2.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Journal Article
      Series/Journal Title
      IEEE transactions on circuits and systems—I
      Rights
      © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
      Collections
      • EEE Journal Articles
      http://dx.doi.org/10.1109/TCSI.2008.925822
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG