View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Calcium-lead fluoro-vanadinite apatites. I. Disequilibrium structures

      Thumbnail
      64. Calcium-Lead Fluoro-Vanadinite.pdf (1.701Mb)
      Author
      Dong, Zhili
      White, Timothy John
      Date of Issue
      2004
      School
      School of Materials Science and Engineering
      Version
      Published version
      Abstract
      The synthetic vanadinites (PbxCa10-x)(VO4)6F2δ, 1 < x < 9, adopt a P63/m apatite structure with 9.7590 (1) ≤ a ≤ 10.1179 (1) Å and 7.0434 (3) ≤ c ≤ 7.4021 (1) Å. The partitioning of calcium and lead over the AI(4f) and AII(6h) positions is nonstoichiometric with lead preferentially entering the larger AII site. High-resolution electron microscopy showed that samples annealed for 10 h at 1073 K are in disequilibrium with calcium- and lead-rich microdomains coexisting at unit-cell scales. For (Pb5Ca5)(VO4)6F2δ, sintering in excess of 2 weeks is required for the metals to order macroscopically. As annealing progresses, c/a, the partitioning coefficient kPb(AI/AII) and the AIO6 metaprism twist angle (φ) adjust ooperatively to enlarge the apatite channel, and thereby accommodate higher lead content. These results demonstrate that φ is a sensitive measure of disequilibrium and a useful device for monitoring changes in apatite topology as a function of composition.
      Subject
      DRNTU::Engineering::Materials::Ecomaterials
      Type
      Journal Article
      Series/Journal Title
      Acta crystallographica B
      Rights
      © 2004 International Union of Crystallography. This paper was published in Acta Crystallographica B and is made available as an electronic reprint (preprint) with permission of International Union of Crystallography. The paper can be found at the following DOI: http://dx.doi.org/10.1107/S0108768104001831. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1107/S0108768104001831
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG