View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Artificial neural network-based drug design for diabetes mellitus using flavonoids

      Thumbnail
      Author
      Patra, Jagdish Chandra
      Chua, Boon H.
      Date of Issue
      2010
      School
      School of Computer Engineering
      Abstract
      Diabetes mellitus is a chronic metabolic disease involving the failure to regulate glucose blood levels in the body and has been linked with numerous detrimental complications. Studies have shown that these complications can be linked to the activities of aldose reductase (AR), an enzyme of the polyol pathway. Flavonoids have been identified as good AR inhibitors (ARIs) and are also strong antioxidants with radical scavenging (RS) activity. As such, flavonoids show potential to become a better class of ARIs because they are able to concurrently address the oxidative stress issue. In this article, we carried out quantitative structure-activity relationship analysis of flavones and flavonols (members of flavonoid family) using artificial neural networks. Three computer experiments were conducted to study the influence of hydrogen (H), hydroxyl (OH), and methoxyl (CH3) functional groups on eight substitution sites of the lead flavone molecule and to predict potential ARIs. Of 6561 possible flavones and flavonols, in experiment 1, we predicted 69 potent ARIs, and in experiment 2, we predicted 346 compounds with strong RS activity. In experiment 3, we combined these results to find overlapping compounds with both strong AR inhibition and RS activity and we are able to predict 10 potent compounds with strong AR inhibition (IC50 < 0.3 μM) and RS activity (IC25 < 1.0 μM). These 10 compounds show promise of being good therapeutic agents in the prevention of diabetic complications and is suggested to undergo further wet bench experimentation to prove their potency.
      Subject
      DRNTU::Engineering::Computer science and engineering::Computer applications::Life and medical sciences
      Type
      Journal Article
      Series/Journal Title
      Journal of computational chemistry
      Rights
      © 2010 Wiley Periodicals, Inc.
      Collections
      • SCSE Journal Articles
      http://dx.doi.org/10.1002/jcc.21641
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG