Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94568
Title: On the rational cuspidal subgroup and the rational torsion points of Jo(pq)
Authors: Chua, Seng Kiat
Ling, San
Keywords: DRNTU::Science::Mathematics
Issue Date: 1997
Source: Chua, S. K., & Ling, S. (1997). On the rational cuspidal subgroup and the rational torsion points of Jo(pq). Proceedings of the American Mathematical Society, 125, 2255–2263.
Series/Report no.: Proceedings of the American mathematical society
Abstract: For two distinct prime numbers p, q, we compute the rational cuspidal subgroup C(pq) of J0(pq) and determine the l-primary part of the rational torsion subgroup of the old subvariety of J0(pq) for most primes l.Some results of Berkoviˇc on the nontriviality of the Mordell-Weil group of some Eisenstein factors of J0(pq) are also refined.
URI: https://hdl.handle.net/10356/94568
http://hdl.handle.net/10220/7617
DOI: 10.1090/S0002-9939-97-03874-4
Rights: ©1997 American Mathematical Society. This paper was published in Proceedings of the American Mathematical Society and is made available as an electronic reprint (preprint) with permission of American Mathematical Society. The paper can be found at http://dx.doi.org/10.1090/S0002-9939-97-03874-4. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
9. On the rational cuspidal subgroup and the rational torsion points of Jo(pq).pdf235.99 kBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.