Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/94441
Title: Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement
Authors: Kong, Tian Fook
Peng, Weng Kung
Luong, Trung-Dung
Nguyen, Nam-Trung
Han, Jongyoon
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2012
Source: Kong, T. F., Peng, W. K., Luong, T. D., Nguyen. N.-T. & Han J. (2012). Adhesive-based liquid metal radio-frequency microcoil for magnetic resonance relaxometry measurement. Lab on a Chip, 12, 287-294.
Series/Report no.: Lab on a chip
Abstract: This paper reports the fabrication and characterization of an adhesive-based liquid-metal microcoil for magnetic resonance relaxometry (MRR). Conventionally, microcoils are fabricated by various techniques such as electroplating, microcontact printing and focused ion beam milling. These techniques require considerable fabrication efforts and incur high cost. In this paper, we demonstrate a novel technique to fabricate three-dimensional multilayer liquid-metal microcoils together with the microfluidic network by lamination of dry adhesive sheets. One of the unique features of the adhesive-based technique is that the detachable sample chamber can be disposed after each experiment and the microcoil can be reused without cross-contamination multiple times. The integrated microcoil has a low direct-current (DC) resistance of 0.3 Ω and a relatively high inductance of 67.5 nH leading to a high quality factor of approximately 30 at 21.65 MHz. The microcoil was characterized for 0.5 T proton MRR measurements. The optimal pulse duration, amplitude, and frequency for the 90° pulse were 131 μs, −30 dB (1.56 W) and 21.6553 MHz, respectively. In addition, we used the liquid-metal microcoil to perform a parametric study on the transverse relaxation rate of human red blood cells at different hematocrit levels. The transverse relaxation rate increases quadratically with the hematocrit level. The results from the liquid-metal microcoil were verified by measurements with a conventional solenoid coil.
URI: https://hdl.handle.net/10356/94441
http://hdl.handle.net/10220/7690
DOI: http://dx.doi.org/10.1039/C1LC20853E
Rights: © 2012 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Lab on a Chip, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1039/C1LC20853E ].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
Liquid Metal NMR Manuscript _Words_.pdf1.3 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.