View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with self-supported carbon nanotube network

      Thumbnail
      Author
      Aravindan, Vanchiappan
      Cheah, Yan Ling
      Mak, Wai Fatt
      Wee, Grace
      Chowdari, Bobba V. R.
      Madhavi, Srinivasan
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      Abstract
      A simple electrospinning technique is employed for the preparation of high-performance V2O5 nanofibers. The fibers thus prepared are subjected to heat treatment under the optimized conditions at 400 °C in air to achieve a single phase. The powder X-ray diffraction pattern confirms the formation of an orthorhombic structure with Pmmn space group. Morphological studies conducted by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), clearly reveal the presence of a highly interconnected network of fibers with the diameter ranging from approximately 500–800 nm. After the heat treatment, translation of smooth fibrous morphology into porous fibers with embedded nanocrystals of V2O5 is noticed from the SEM measurements. The sintered V2O5 nanofibers are used to fabricate a hybrid electrochemical capacitor (HEC) and it is coupled with a substrate-free single-walled carbon nanotube (SWCNT) network (called “Bucky paper”) in a conventional organic electrolyte solution. Supercapacitive behavior of HEC is studied in both potentiostatic and galvanostatic modes at room temperature. The HEC demonstrated very stable and excellent cycling behavior during 3500 cycles of galvanostatic charge and discharge tests. This hybrid system is also well established during the rate capability studies from the applied current density of 30 to 210 mA g−1 and delivered maximum energy and power densities of 18 Wh kg−1 and 315 W kg−1, respectively.
      Subject
      DRNTU::Engineering::Materials
      Type
      Journal Article
      Series/Journal Title
      ChemPlusChem
      Rights
      © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1002/cplu.201200023
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG