dc.contributor.authorZhu, Jixin
dc.contributor.authorLu, Ziyang
dc.contributor.authorOo, Moe Ohnmar
dc.contributor.authorHng, Huey Hoon
dc.contributor.authorMa, Jan
dc.contributor.authorZhang, Hua
dc.contributor.authorYan, Qingyu
dc.identifier.citationZhu, J., Lu, Z., Oo, M. O., Hng, H., H., Ma, J., Zhang, H., et al. (2011). Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rGO composite nanostructures. Journal of Materials Chemistry, 21, 12770-12776.en_US
dc.description.abstractWe report here a study on the Li ion storage performance of binary phased SnO2/rGO and ternary phased SnO2–Fe2O3/rGO composite nanostructures. The SnO2/rGO and SnO2–Fe2O3/rGO were prepared by a facile wet-chemical approach. The Li storage performances of these samples were closely related to the weight ratio of SnO2 : rGO or SnO2 : Fe2O3 : rGO. It was found that ternary SnO2–Fe2O3/rGO composite nanostructures (e.g. with a weight ratio of SnO2 : Fe2O3 : rGO = 11 : 1 : 13) showed significant enhancement of the specific capacities and cyclabilities as compared to that of SnO2/rGO samples. For example, the SnO2–Fe2O3/rGO electrode depicted a specific capacity of 958 mA h g ^-1 at a current density of 395 mA g ^-1 (0.5 C) during the 100th cycle. Such Li storage performances of the SnO2–Fe2O3/rGO electrodes, especially at high current densities (e.g. 530 mA h g ^- 1 at 5 C rate), were also much better than those reported for either SnO2-based or Fe2O3-based electrodes. Such a synergetic effect in the SnO2/Fe2O3/rGO composite nanostructures is promising for the development of advanced electrode materials for rechargeable Li-ion batteries.en_US
dc.relation.ispartofseriesJournal of materials chemistryen_US
dc.rights© 2011 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Materials Chemistry, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1039/c1jm12447a.en_US
dc.titleSynergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rGO composite nanostructuresen_US
dc.typeJournal Article
dc.contributor.researchEnergy Research Institute @NTU
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.description.versionAccepted versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record