Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/95655
Title: Neotectonic architecture of Taiwan and its implications for future large earthquakes
Authors: Shyu, J. Bruce H.
Sieh, Kerry
Chen, Yue-Gau
Liu, Char-Shine
Keywords: DRNTU::Science::Geology::Volcanoes and earthquakes
Issue Date: 2005
Source: Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110.
Series/Report no.: Journal of geophysical research
Abstract: The disastrous effects of the 1999 Chi-Chi earthquake in Taiwan demonstrated an urgent need for better knowledge of the island's potential earthquake sources. Toward this end, we have prepared a neotectonic map of Taiwan. The map and related cross sections are based upon structural and geomorphic expression of active faults and folds both in the field and on shaded relief maps prepared from a 40-m resolution digital elevation model, augmented by geodetic and seismologic data. The active tandem suturing and tandem disengagement of a volcanic arc and a continental sliver to and from the Eurasian continental margin have created two neotectonic belts in Taiwan. In the southern part of the orogen both belts are in the final stage of consuming oceanic crust. Collision and suturing occur in the middle part of both belts, and postcollisional collapse and extension dominate the island's northern and northeastern flanks. Both belts consist of several distinct neotectonic domains. Seven domains (Kaoping, Chiayi, Taichung, Miaoli, Hsinchu, Ilan, and Taipei) constitute the western belt, and four domains (Lutao-Lanyu, Taitung, Hualien, and Ryukyu) make up the eastern belt. Each domain is defined by a distinct suite of active structures. For example, the Chelungpu fault (source of the 1999 earthquake) and its western neighbor, the Changhua fault, are the principal components of the Taichung Domain, whereas both its neighboring domains, the Chiayi and Miaoli Domains, are dominated by major blind faults. In most of the domains the size of the principal active fault is large enough to produce future earthquakes with magnitudes in the mid-7 values.
URI: https://hdl.handle.net/10356/95655
http://hdl.handle.net/10220/8469
ISSN: 0148–0227
DOI: http://dx.doi.org/10.1029/2004JB003251
Rights: © 2005 American Geophysical Union. This paper was published in Journal of Geophysical Research and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at the following official URL: http://dx.doi.org/10.1029/2004JB003251. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EOS Journal Articles

Files in This Item:
File Description SizeFormat 
Neotectonic architecture of Taiwan and its implications for future large earthquakes.pdf13.37 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.