View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2

      Thumbnail
      31. Molecular characterization of FK-506 binding protein.pdf (686.3Kb)
      Author
      Kang, Cong Bao
      Feng, Lin
      Chia, Joel
      Yoon, Ho Sup
      Date of Issue
      2005
      School
      School of Biological Sciences
      Version
      Accepted version
      Abstract
      The immunosuppressant FK-506 binding protein 38 (FKBP38) is localized at the mitochondrial membrane and appears to play an important role in apoptosis. Recent reports about the potential functions of FKBP38 in apoptosis appear to be controversial. To further understand the biological function of FKBP38, here, we studied its molecular characteristics and a potential regulatory role on the anti-apoptotic protein Bcl-2. Our results suggest that FKBP38 appears to show chaperone activities in the citrate synthase aggregation assays during thermal denaturation and affect solubility of Bcl-2 when they are co-expressed. The FKBP family proteins bind the immunosuppressive drug FK-506 through the FK-506 binding domain and consequently inhibit the activity of calcineurin. In this study, from our NMR studies and calcineurin assays in vitro, we demonstrate that the N-terminal fragment of FKBP38 which contains the FK-506 binding domain does not bind FK-506 at molecular level. Lastly, to investigate the effect of FKBP38 on Bcl-2, we suppressed FKBP38 by RNA interference (RNAi) of FKBP38. Our results suggest that the suppression of FKBP38 appears to make Bcl-2 unstable or unprotected from degradation in an unknown mechanism.
      Subject
      DRNTU::Science::Biological sciences
      Type
      Journal Article
      Series/Journal Title
      Biochemical and biophysical research communications
      Rights
      © 2005 Elsevier Inc. This is the author created version of a work that has been peer reviewed and accepted for publication by Biochemical and Biophysical Research Communications, Elsevier Inc. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.bbrc.2005.09.023].
      Collections
      • SBS Journal Articles
      http://dx.doi.org/10.1016/j.bbrc.2005.09.023
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG