dc.contributor.authorLin, Fuchun
dc.contributor.authorOggier, Frederique
dc.date.accessioned2013-02-19T04:13:14Z
dc.date.available2013-02-19T04:13:14Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationLin, F., & Oggier, F. (2012). Gaussian wiretap lattice codes from binary self-dual codes. 2012 IEEE Information Theory Workshop (ITW 2012). pp.662-666.en_US
dc.identifier.urihttp://hdl.handle.net/10220/9149
dc.description.abstractWe consider lattice coding over a Gaussian wiretap channel with respect to the secrecy gain, a lattice invariant introduced in [1] to characterize the confusion that a chosen lattice can cause at the eavesdropper. The secrecy gain of the best unimodular lattices constructed from binary self-dual codes in dimension n, 24 ≤ n ≤ 32 are calculated. Numerical upper bounds on the secrecy gain of unimodular lattices in general and of unimodular lattices constructed from binary self-dual codes in particular are derived for all even dimensions up to 168.en_US
dc.language.isoenen_US
dc.rights© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/ITW.2012.6404761].en_US
dc.subjectDRNTU::Science::Mathematics::Applied mathematics::Numerical analysis
dc.titleGaussian wiretap lattice codes from binary self-dual codesen_US
dc.typeConference Paper
dc.contributor.conferenceIEEE Information Theory Workshop (11th : 2012 : Lausanne, Switzerland)en_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1109/ITW.2012.6404761
dc.description.versionAccepted versionen_US
dc.identifier.rims167277


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record