Please use this identifier to cite or link to this item:
Title: Room-temperature ferromagnetism via unpaired dopant electrons and p-p coupling in carbon-doped In2O3 : experiment and theory
Authors: Kurmaev, E. Z.
Finkelstein, L. D.
Green, R. J.
Boukhvalov, D. W.
Ho, H. W.
Ruan, K. B.
Wang, L.
Moewes, A.
Keywords: DRNTU::Science::Physics
Issue Date: 2012
Source: Green, R. J., Boukhvalov, D. W., Kurmaev, E. Z., Finkelstein, L. D., Ho, H. W., Ruan, K. B., et al. (2012). Room-temperature ferromagnetism via unpaired dopant electrons and p-p coupling in carbon-doped In2O3: Experiment and theory. Physical Review B, 86(11), 115212-.
Series/Report no.: Physical review B
Abstract: Observations of magnetism in semiconductors doped with nonmagnetic atoms (C, N, etc.) show promise for spintronics applications, but pose an interesting challenge for conventional theories of magnetism. In this work, the magnetic semiconductor carbon-doped In2O3 is studied using theoretical and experimental techniques. Density-functional theory calculations predict that ferromagnetism can exist near room temperatures when substitutional carbon atoms have a formally unpaired 2p electron that does not participate in bonding. The unpaired 2p electrons lead to an impurity band near the Fermi level and consequent enhanced density of states which accommodates a strong p-p coupling between local magnetic moments. The unpaired electrons and ferromagnetic coupling are found to arise from a combination of interstitial and substitutional carbon atoms in close proximity. Finally, experimental measurements on samples with varying magnetic properties verify the importance of both strong C 2p character at the Fermi level and strong C 2sp-In 4d hybridization for yielding room-temperature ferromagnetism. These results shed light on the interesting field of nonmagnetic dopants inducing ferromagnetism in semiconductors.
DOI: 10.1103/PhysRevB.86.115212
Rights: © 2012 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
4. Room-temperature ferromagnetism via unpaired.pdf1.02 MBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.