Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/95041
Title: Density functional theory analysis of dopants in cupric oxide
Authors: Zhang, Zhen
Pham, Thien Viet
Zhao, Yang
Wu, Ping
Wang, Junling
Peng, Yuan
Keywords: DRNTU::Engineering::Materials::Metallic materials
Issue Date: 2012
Source: Peng, Y., Zhang, Z., Pham, T. V., Zhao, Y., Wu, P., & Wang, J. (2012). Density functional theory analysis of dopants in cupric oxide. Journal of Applied Physics, 111(10), 103708.
Series/Report no.: Journal of applied physics
Abstract: Fabrication of both p-type and n-type cupric oxide is of great importance for the large-scale photovoltaic application. Our first-principles density functional theory calculations confirm that copper vacancy can lead to good p-type conduction in CuO, while oxygen vacancy is a deep donor. To investigate electrical conduction in CuO, we calculated the defect formation energies as well as their ionization levels for several potential acceptors and donors. Our results indicate that Li and Na are shallow acceptors and their formation energies are low in oxygen rich environment. However, it is also found that n-type conduction is relatively hard to induce by donors, as most donors have deep transition levels in the band gap and/or high formation energies. Hf and Zr have the shallowest ionization levels of around 0.2 eV below the conduction band minimum, but their formation energies are relatively high, limiting the electrical conductivity of doped CuO. Our study explains why it is hard to obtain n-type conduction in CuO.
URI: https://hdl.handle.net/10356/95041
http://hdl.handle.net/10220/9261
ISSN: 0021-8979
DOI: 10.1063/1.4719059
Rights: © 2012 American Institute of Physics. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4719059]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
13. Density functional theory analysis of dopants in cupric oxide.pdf894.68 kBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.