Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/10002
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoh, Amos Sheng En.en_US
dc.contributor.authorLin, Isaac Jia Xin.en_US
dc.contributor.authorNg, Alwyn Liang You.en_US
dc.date.accessioned2008-09-24T07:38:42Z-
dc.date.available2008-09-24T07:38:42Z-
dc.date.copyright2006en_US
dc.date.issued2006-
dc.identifier.urihttp://hdl.handle.net/10356/10002-
dc.description.abstractThis study examines the use of data mining techniques namely decision tree, neural networks and logistic regression to predict the likelihood of a corporate failure through inputs on companies' financial variables.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Business::Law::Bankruptcy-
dc.titleCorporate bankruptcy prediction through data mining.en_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorKoh, Hian Chyeen_US
dc.contributor.schoolCollege of Business (Nanyang Business School)en_US
dc.contributor.supervisor2Wu, Yuanen_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:NBS Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
NBS-REPORTS_2596.pdf
  Restricted Access
279.19 kBAdobe PDFView/Open

Page view(s) 50

285
Updated on Jan 25, 2021

Download(s)

2
Updated on Jan 25, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.