Please use this identifier to cite or link to this item:
Title: Molecular dynamic simulation of diamond/silicon interfacial thermal conductance
Authors: Khosravian, N.
Samani, M. K.
Loh, G. C.
Chen, G. C. K.
Baillargeat, D.
Tay, B. K.
Keywords: DRNTU::Science::Physics::Heat and thermodynamics
Issue Date: 2013
Source: Khosravian, N., Samani, M. K., Loh, G. C., Chen, G. C. K., Baillargeat, D., & Tay, B. K. (2013). Molecular dynamic simulation of diamond/silicon interfacial thermal conductance. Journal of Applied Physics, 113(2), 024907.
Series/Report no.: Journal of applied physics
Abstract: Non-equilibrium molecular dynamic simulation was employed to investigate the interfacial thermal conductance between diamond and silicon substrate. The interfacial thermal conductance was computed based on Fourier's law. The simulation was done at different temperature ranges and results show that the interfacial thermal conductance between diamond-silicon is proportional to temperature and increases with temperature even above Debye temperature of silicon. Enhancement of thermal boundary conductance with temperature is attributed to inelastic phonon-phonon scattering at the interface. The system size dependence of interfacial thermal conductance was also examined. We found that thermal transport is a function of the system size when the size of system is smaller than the phonon mean free path and increases with the size of structure. We also simulated the effect of interface defect on phonon scattering and subsequently thermal conductance. The results also show that interface defect enhances acoustic phonon scattering which results in reduction of thermal boundary conductance. Our findings provide accurate and valuable information on phonon transport in diamond-silicon structure.
ISSN: 0021-8979
DOI: 10.1063/1.4775399
Rights: © 2013 American Institute of Physics. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official DOI: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles
NTC Journal Articles

Files in This Item:
File Description SizeFormat 
Molecular dynamic simulation of diamond silicon interfacial thermal conductance.pdf613.55 kBAdobe PDFThumbnail

Citations 20

Updated on Mar 7, 2021

Citations 20

Updated on Mar 8, 2021

Page view(s) 10

Updated on Jun 26, 2022

Download(s) 10

Updated on Jun 26, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.