Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/100485
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Longhuaen
dc.contributor.authorKim, Dong-Hwanen
dc.date.accessioned2013-07-10T02:10:06Zen
dc.date.accessioned2019-12-06T20:23:18Z-
dc.date.available2013-07-10T02:10:06Zen
dc.date.available2019-12-06T20:23:18Z-
dc.date.copyright2011en
dc.date.issued2011en
dc.identifier.citationGuo, L., Kim, D.-H. (2011). LSPR biomolecular assay with high sensitivity induced by aptamer–antigen–antibody sandwich complex. Biosensors and Bioelectronics, 31(1), 567-570.en
dc.identifier.urihttps://hdl.handle.net/10356/100485-
dc.identifier.urihttp://hdl.handle.net/10220/11078en
dc.description.abstractHerein we demonstrate a sensitive approach for protein detection based on peak shifts of localized surface plasmon resonance (LSPR) induced by aptamer–antigen–antibody sandwich structures. The applicability of the proposed method is demonstrated using human α-thrombin as a model analyte. While the binding of thrombin to its specific receptor, thrombin binding aptamer (TBA) modified on Au nanorods (AuNRs), causes a measurable LSPR shift, a subsequent binding of an anti-thrombin antibody to the captured thrombin can exhibit a nearly 150% amplification in the LSPR response. This enhanced signal essentially leads to an improvement of limit of detection (LOD) by more than one order of magnitude. In addition, the use of TBA as thrombin recognition units makes the biosensor reusable. The feasibility of the proposed method was further exploited by the detection of thrombin in human serum, opening the possibility of a real application for diagnostics and medical investigations.en
dc.language.isoenen
dc.relation.ispartofseriesBiosensors and bioelectronicsen
dc.rights© 2011 Elsevier B.V.en
dc.titleLSPR biomolecular assay with high sensitivity induced by aptamer–antigen–antibody sandwich complexen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen
dc.identifier.doi10.1016/j.bios.2011.10.047en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.