Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/100623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhong, Andy Wai Hoongen
dc.contributor.authorLiu, Benxuen
dc.contributor.authorReju, V.en
dc.date.accessioned2014-08-20T08:17:00Zen
dc.date.accessioned2019-12-06T20:25:34Z-
dc.date.available2014-08-20T08:17:00Zen
dc.date.available2019-12-06T20:25:34Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationLiu, B., Reju, V. G., & Khong, A. W. H. (2014). A linear source recovery method for underdetermined mixtures of uncorrelated AR-model signals without sparseness. IEEE transactions on signal processing, 62(19), 4947-4958.en
dc.identifier.issn1053-587Xen
dc.identifier.urihttps://hdl.handle.net/10356/100623-
dc.description.abstractConventional sparseness-based approaches for instantaneous underdetermined blind source separation (UBSS) do not take into account the temporal structure of the source signals. In this work, we exploit the source temporal structure and propose a linear source recovery solution for the UBSS problem which does not require the source signals to be sparse. Assuming the source signals are uncorrelated and can be modeled by an autoregressive (AR) model, the proposed algorithm is able to estimate the source AR coefficients from the mixtures given the mixing matrix. We prove that the UBSS problem can be converted into a determined problem by combining the source AR model together with the original mixing equation to form a state-space model. The Kalman filter is then applied to obtain a linear source estimate in the minimum mean-squared error sense. Simulation results using both synthetic AR signals and speech utterances show that the proposed algorithm achieves better separation performance compared with conventional sparseness-based UBSS algorithms.en
dc.language.isoenen
dc.relation.ispartofseriesIEEE transactions on signal processingen
dc.rights© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TSP.2014.2329646].en
dc.subjectElectrical and Electronic Engineeringen
dc.titleA linear source recovery method for underdetermined mixtures of uncorrelated AR-model signals without sparsenessen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen
dc.identifier.doi10.1109/TSP.2014.2329646en
dc.description.versionAccepted versionen
dc.identifier.rims178645en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations

16
checked on Sep 6, 2020

WEB OF SCIENCETM
Citations

14
checked on Sep 22, 2020

Page view(s)

366
checked on Sep 25, 2020

Download(s)

230
checked on Sep 25, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.