Please use this identifier to cite or link to this item:
Title: Factors affecting flux performance of forward osmosis systems
Authors: Lay, Winson Chee Loong
Zhang, Jinsong
Tang, Chuyang Y.
Wang, Rong
Liu, Yu
Fane, Anthony Gordon
Keywords: DRNTU::Engineering::Civil engineering::Water resources
Issue Date: 2012
Source: Lay, W. C., Zhang, J., Tang, C., Wang, R., Liu, Y., & Fane, A. G. (2012). Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science, (394-395), 151-168.
Series/Report no.: Journal of membrane science
Abstract: The performance of a forward osmosis (FO) system may be characterised by the assessment parameters: FO–RO flux ratio (Jw/Jw(RO)), apparent FO water permeability (Jw/(πds − πml)), and the newly developed flux efficiency factor (Jw,ob/Jw,re). The former two parameters offer information on extent of internal concentration polarisation and driving force utilisation, respectively. The Jw,ob/Jw,re factor has practical relevance, and reveals the inevitable trade-off between flux and recovery (φ) for a FO system. The derived Jw,ob/Jw,re factors corresponded well to experimental observations. High water permeability, low salt-to-water permeability ratio, and large mass transfer coefficient improve the performance of a FO system, but these may also be influenced by operational and fouling effects, such as draw solute transmission, fouling resistance and cake-enhanced concentration polarisation. It was shown that membrane properties also play a significant role in fouling behaviour. Fouling amelioration factors include aeration and osmotic backwash. A thin-film composite membrane showed potential for FO application with favourable intrinsic transport parameters. It was demonstrated that a FO system could achieve stable water production with both relatively high flux efficiency (Jw,ob/Jw,re = 0.8) and high recovery (φ = 95.8%), which attested to the technology potential.
DOI: 10.1016/j.memsci.2011.12.035
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

Citations 5

Updated on Jan 30, 2023

Web of ScienceTM
Citations 5

Updated on Feb 1, 2023

Page view(s) 50

Updated on Feb 4, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.