Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/101657
Title: | N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs | Authors: | Hoang, Viet Ha. Schwab, Christoph. |
Keywords: | DRNTU::Science::Mathematics | Issue Date: | 2014 | Source: | Hoang, V. H., & Schwab, C. (2013). N-Term Wiener Chaos Approximation Rates For Elliptic PDEs with Lognormal Gaussian Random Inputs. Mathematical Models and Methods in Applied Sciences, 1-30. | Series/Report no.: | Mathematical models and methods in applied sciences | Abstract: | We consider diffusion in a random medium modeled as diffusion equation with lognormal Gaussian diffusion coefficient. Sufficient conditions on the log permeability are provided in order for a weak solution to exist in certain Bochner–Lebesgue spaces with respect to a Gaussian measure. The stochastic problem is reformulated as an equivalent deterministic parametric problem on RN. It is shown that the weak solution can be represented as Wiener–Itˆo Polynomial Chaos series of Hermite Polynomials of a countable number of i.i.d standard Gaussian random variables taking values in R1. We establish sufficient conditions on the random inputs for weighted sequence norms of the Wiener–Itˆo decomposition coefficients of the random solution to be p-summable for some 0 < p < 1. For random inputs with additional spatial regularity, stronger norms of the weighted coefficient sequence in the random solutions’ Wiener–Itˆo decomposition are shown to be p-summable for the same value of 0 < p < 1. We prove rates of nonlinear, best N-term Wiener Polynomial Chaos approximations of the random field, as well as of Finite Element discretizations of these approximations from a dense, nested family V0 ⊂ V1 ⊂ V2 ⊂ ·· · V of finite element spaces of continuous, piecewise linear Finite Elements. | URI: | https://hdl.handle.net/10356/101657 http://hdl.handle.net/10220/18709 |
DOI: | 10.1142/S0218202513500681 | Rights: | © 2014 World Scientific Publishing Company. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SPMS Journal Articles |
SCOPUSTM
Citations
10
22
Updated on Sep 7, 2020
PublonsTM
Citations
10
19
Updated on Mar 6, 2021
Page view(s) 20
536
Updated on Jun 25, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.