Please use this identifier to cite or link to this item:
Title: Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes
Authors: Tang, Yuxin
Jiang, Zhelong
Xing, Guichuan
Li, Anran
Kanhere, Pushkar D.
Zhang, Yanyan
Sum, Tze Chien
Li, Shuzhou
Chen, Xiaodong
Dong, Zhili
Chen, Zhong
Keywords: DRNTU::Science::Chemistry::Physical chemistry
Issue Date: 2013
Source: Tang, Y., Jiang, Z., Xing, G., Li, A., Kanhere, P. D., Zhang, Y., et al. (2013). Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Advanced Functional Materials, 23(23), 2932-2940.
Series/Report no.: Advanced functional materials
Abstract: Photon-coupling and electron dynamics are the key processes leading to the photocatalytic activity of plasmonic metal-semiconductor nanohybrids. To better utilize and explore these effects, a facile large-scale synthesis route to form Ag@AgCl cubic cages with well-defined hollow interiors is carried out using a water-soluble sacrificial salt-crystal-template process. Theoretical calculations and experimental probes of the electron transfer process are used in an effort to gain insight into the underlying plasmonic properties of the Ag@AgCl materials. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant light confinement and enhancement around the Ag/AgCl interfacial plasmon hot spots and multilight-reflection inside the cage structure. More importantly, an ultrafast electron transfer process (≤150 fs) from Ag nanoparticles to the AgCl surface is detected, which facilitates the charge separation efficiency in this system, contributing to high photocatalytic activity and stability of Ag@AgCl photocatalyst towards organic dye degradation.
ISSN: 1616-301X
DOI: 10.1002/adfm.201203379
Rights: © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles
SPMS Journal Articles

Citations 50

Updated on Jan 17, 2021

Citations 50

Updated on Jan 16, 2021

Page view(s) 50

Updated on Jan 17, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.