Please use this identifier to cite or link to this item:
Title: Electrospun polyaniline nanofibers web electrodes for supercapacitors
Authors: Chaudhari, Sudeshna
Sharma, Yogesh
Archana, Panikar Sathyaseelan
Jose, Rajan
Ramakrishna, Seeram
Mhaisalkar, Subodh
Srinivasan, Madhavi
Keywords: DRNTU::Engineering::Materials
Issue Date: 2012
Source: Chaudhari, S., Sharma, Y., Archana, P. S., Jose, R., Ramakrishna, S., Mhaisalkar, S., et al. (2013). Electrospun polyaniline nanofibers web electrodes for supercapacitors. Journal of Applied Polymer Science, 129(4), 1660-1668.
Series/Report no.: Journal of applied polymer science
Abstract: Polyaniline nanofibers (PANI-NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field-emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ∼30 μm and average diameter ∼200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI-NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI-NFs web show higher specific capacitance (∼267 F g−1) than chemically synthesized PANI powder (∼208 F g−1) in 1M H2SO4. Further, PANI-NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ∼230 F g−1 at 1000th cycle. Capacitance retention of PANI-NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI-NFs web as superior electrode materials for supercapacitors.
ISSN: 0021-8995
DOI: 10.1002/app.38859
Rights: © 2012 Wiley Periodicals, Inc.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Citations 5

Updated on Jun 18, 2020

Citations 5

Updated on Mar 5, 2021

Page view(s) 20

Updated on Aug 8, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.