Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/102396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHirao, Hajimeen
dc.contributor.authorChuanprasit, Pratanphornen
dc.contributor.authorCheong, Ying Yien
dc.contributor.authorWang, Xiaoqingen
dc.date.accessioned2014-04-03T06:21:18Zen
dc.date.accessioned2019-12-06T20:54:16Z-
dc.date.available2014-04-03T06:21:18Zen
dc.date.available2019-12-06T20:54:16Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationHirao, H., Chuanprasit, P., Cheong, Y. Y., & Wang, X. (2013). How Is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine : hydrogen abstraction or nitrogen oxidation?. Chemistry - A European Journal, 19(23), 7361-7369.en
dc.identifier.issn0947-6539en
dc.identifier.urihttps://hdl.handle.net/10356/102396-
dc.description.abstractA precise understanding of the mechanism-based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug–drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism-based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1-dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene-type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C[BOND]H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N[BOND]H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene-type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450-catalyzed reaction.en
dc.language.isoenen
dc.relation.ispartofseriesChemistry - a European journalen
dc.rights© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en
dc.subjectDRNTU::Science::Chemistry::Physical chemistry::Catalysisen
dc.titleHow Is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine : hydrogen abstraction or nitrogen oxidation?en
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1002/chem.201300689en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 10

38
Updated on Mar 21, 2024

Web of ScienceTM
Citations 10

37
Updated on Oct 28, 2023

Page view(s) 50

428
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.