Please use this identifier to cite or link to this item:
Title: The X control chart for monitoring process shifts in mean and variance
Authors: Khoo, Michael B. C.
Yang, Mei
Wu, Zhang
Lee, Ka Man
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2012
Source: Yang, M., Wu, Z., Lee, K. M., & Khoo, M. B. C. (2012). The X control chart for monitoring process shifts in mean and variance. International journal of production research, 50(3), 893-907.
Series/Report no.: International journal of production research
Abstract: Control charts are widely used in statistical process control (SPC) to monitor the quality of products or production processes. When dealing with a variable (e.g., the diameter of a shaft, the hardness of a component surface), it is necessary to monitor both its mean and variability (Montgomery 2009 [Montgomery, D.C., 2009. Introduction to statistical quality control. New York: John Wiley & Sons.]). This article studies and compares the overall performances of the X chart and the 3-CUSUM chart for this purpose. The latter is a combined scheme incorporating three individual CUSUM charts and is considered as the most effective scheme for detecting mean shift δμ and/or standard deviation shift δσ in current SPC literature. The results of the performance studies reveal two interesting findings: (1) the best sample size n for an Ẋ chart is always n = 1, in other words, the simplest X chart (i.e., the Ẋ chart with n = 1) is the most effective Ẋ chart for detecting δμ and/or δσ; (2) the simplest X chart often outperforms the 3-CUSUM chart from an overall viewpoint unless the latter is redesigned by a difficult optimisation procedure. However, even the optimal 3-CUSUM chart is only slightly more effective than the X chart unless the process shift domain is quite small. Since the X chart is very simple to understand, implement and design, it may be more suitable in many SPC applications, in which both the mean and variance of a variable need to be monitored.
DOI: 10.1080/00207543.2010.539283
Rights: © 2012 Taylor & Francis
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Citations 20

Updated on Jan 19, 2023

Web of ScienceTM
Citations 20

Updated on Jan 30, 2023

Page view(s) 20

Updated on Feb 5, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.