Please use this identifier to cite or link to this item:
Title: Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography
Authors: Rejesh, Nadaparambil Aravindakshan
Pullagurla, Harish
Pramanik, Manojit
Keywords: DRNTU::Science::Chemistry::Biochemistry
Issue Date: 2013
Source: Rejesh, N. A., Pullagurla, H., & Pramanik, M. (2013). Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography. Journal of Optical Society of America A, 30(10), 1994-2001.
Series/Report no.: Journal of optical society of America A
Abstract: Photoacoustic/thermoacoustic tomography is an emerging hybrid imaging modality combining optical/microwave imaging with ultrasound imaging. Here, a k-wave MATLAB toolbox was used to simulate various configurations of excitation pulse shape, width, transducer types, and target object sizes to see their effect on the photoacoustic/thermoacoustic signals. A numerical blood vessel phantom was also used to demonstrate the effect of various excitation pulse waveforms and pulse widths on the reconstructed images. Reconstructed images were blurred due to the broadening of the pressure waves by the excitation pulse width as well as by the limited transducer bandwidth. The blurring increases with increase in pulse width. A deconvolution approach is presented here with Tikhonov regularization to correct the photoacoustic/thermoacoustic signals, which resulted in improved reconstructed images by reducing the blurring effect. It is observed that the reconstructed images remain unaffected by change in pulse widths or pulse shapes, as well as by the limited bandwidth of the ultrasound detectors after the use of the deconvolution technique.
DOI: 10.1364/JOSAA.30.001994
Rights: © 2013 Optical Society of America. This paper was published in Journal of Optical Society of America A and is made available as an electronic reprint (preprint) with permission of Optical Society of America. The paper can be found at the following official DOI: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Citations 10

Updated on Jan 23, 2023

Web of ScienceTM
Citations 10

Updated on Jan 25, 2023

Page view(s) 20

Updated on Jan 27, 2023

Download(s) 10

Updated on Jan 27, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.