Please use this identifier to cite or link to this item:
Title: Mono- and co-doped NaTaO3 for visible light photocatalysis
Authors: Kanhere, Pushkar
Shenai, Prathamesh
Chakraborty, Sudip
Ahuja, Rajeev
Zheng, Jianwei
Chen, Zhong
Keywords: DRNTU::Science::Chemistry::Physical chemistry::Catalysis
Issue Date: 2014
Source: Kanhere, P., Shenai, P., Chakraborty, S., Ahuja, R., Zheng, J., & Chen, Z. (2014). Mono- and co-doped NaTaO3 for visible light photocatalysis. Physical chemistry chemical physics., 16(30), 16085-16094.
Series/Report no.: Physical chemistry chemical physics
Abstract: Electronic structures of doped NaTaO3 compounds are of significant interest to visible light photocatalysis. This work involves the study of the band gap, band edge potentials, and thermodynamic stability of certain mono-doped and co-doped NaTaO3 systems, using DFT-PBE as well as hybrid (PBE0) functional calculations. Doping of certain non-magnetic cations (Ti, V, Cu, Zn, W, In, Sn, Sb, Ce, and La), certain anions (N, C, and I), and certain co-dopant pairs (W–Ti, W–Ce, N–I, N–W, La–C, Pb–I, and Cu–Sn) is investigated. Our calculations suggest that substitutional doping of Cu at the Ta site, Cu at the Na site, and C at the O site narrows the band gap of NaTaO3 to 2.3, 2.8, and 2.1 eV, respectively, inducing visible light absorption. Additionally, passivated co-doping of Pb–I and N–W narrows the band gap of NaTaO3 to the visible region, while maintaining the band potentials at favorable positions. Hybrid density of states (DOS) accurately describe the effective band potentials and the location of mid-gap states, which shed light on the possible mechanism of photoexcitation in relation to the photocatalysis reactions. Furthermore, the thermodynamic stability of the doped systems and defect pair binding energies of co-doped systems are discussed in detail. The present results provide useful insights into designing new photocatalysts based on NaTaO3.
ISSN: 1463-9076
DOI: 10.1039/C4CP01000K
Rights: This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ERI@N Journal Articles
MSE Journal Articles

Files in This Item:
File Description SizeFormat 
Mono- and co-doped NaTaO 3 for visible light photocatalysis.pdf3.56 MBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.