Please use this identifier to cite or link to this item:
Title: A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension
Authors: You, Siming
Wan, Man Pun
Issue Date: 2015
Source: You, S., & Wan, M. P. (2015). A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension. Risk Analysis, 35(8), 1488-1502.
Series/Report no.: Risk Analysis
Abstract: A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow-induced particle resuspension [AIPR] and walking-induced particle resuspension [WIPR]) were derived based on two-compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose-response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0–0.5 hours and from 0.54 to 0.57 during 0.5–4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0–0.5 hours and from 0.87 to 1 during 0.5–4 hours. Sensitivity analysis was conducted based on the design-of-experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.
ISSN: 0272-4332
DOI: 10.1111/risa.12350
Rights: © 2015 Society for Risk Analysis.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Page view(s)

Updated on May 26, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.