Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/103136
Title: An improved finite element method for cracks with multiple branches
Authors: Zhang, H. H.
Li, L. X.
An, Xinmei
Ma, Guowei
Issue Date: 2012
Source: An, X., Ma, G., Zhang, H. H., & Li, L. X. (2012). An improved finite element method for cracks with multiple branches. International journal of computational methods, 9(3), 1250043.
Series/Report no.: International journal of computational methods
Abstract: The conventional finite element method is improved to tackle complex cracks with multiple branches. The parasitic nodes are introduced to the nodes whose nodal support is completely cut by the crack surfaces, while the nodes whose supports contain crack tips inside are accordingly enriched by the crack tip functions. The principle to set parasitic nodes is regulated, and the relation to the previous methods is dissected. The formulation of the present method is derived, and numerical experiments are conducted. The results show that the present method can treat complex cracks conveniently and efficiently, and the unknowns have a clear physical interpretation.
URI: https://hdl.handle.net/10356/103136
http://hdl.handle.net/10220/16946
DOI: 10.1142/S0219876212500430
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.