Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKantchev , Eric Assen B.en
dc.contributor.authorPangestu, Surya R.en
dc.contributor.authorZhou, Fengen
dc.contributor.authorSullivan, Michael B.en
dc.contributor.authorSu, Hai-Binen
dc.identifier.citationKantchev , E. A. B., Pangestu, S. R., Zhou, F., Sullivan, M. B., & Su, H.-B. (2014). First principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid. Chemistry - A European journal, 20(47), 15625-15634.en
dc.description.abstractThe C-H activation in the tandem, “merry-go-round”, [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)-H oxidative addition to square-pyramidal RhIII-H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol−1, and that of reductive elimination was 5.0 kcal mol−1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol−1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol−1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol−1) proceeds through a lower barrier than the protonation (16.7 kcal mol−1) of the rearranged aryl–Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol−1, explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol−1, suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation.en
dc.relation.ispartofseriesChemistry - A European journalen
dc.rights© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en
dc.titleFirst principles (DFT) characterization of RhI/dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic aciden
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles

Citations 20

Updated on Mar 7, 2021

Citations 20

Updated on Mar 3, 2021

Page view(s)

Updated on May 14, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.