Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/103372
Title: Numerical analysis with joint model on RC assemblages subjected to progressive collapse
Authors: Tan, Kang Hai
Yu, Jun
Keywords: DRNTU::Engineering::Civil engineering::Structures and design
Issue Date: 2014
Source: Tan, K. H., & Yu, J. (2014). Numerical analysis with joint model on RC assemblages subjected to progressive collapse. Magazine of concrete research, 66(23), 1201-1218.
Series/Report no.: Magazine of concrete research
Abstract: The behaviour of structures subjected to progressive collapse is typically investigated by introducing column-removing scenarios. Previous experimental results show that large-deformation performances of reinforced concrete (RC) assemblages under a middle column removal scenario (MCRS) involve discontinuity due to bar slip and fracture near the joint interfaces. To consider the effects of the discontinuity on structural behaviour, a component-based joint model is introduced into macromodel-based finite-element analysis (macro-FEA), in which beams are modelled as fibre elements. The joint model consists of a series of non-linear springs, each of which represents a load transfer path from adjoining members to a joint. The calibration procedures of spring properties are illustrated systematically. In particular, a macro-bar stress–slip model is developed to consider the effects of large post-yield tensile strains and finite embedment lengths on the bar stress–slip relationship. Comparisons of simulated and observed responses for a series of RC assemblages indicate that macro-FEA incorporating the joint model is a practical approach to simulate the essential structural behaviour of RC assemblages under a MCRS, including catenary action. Finally, the macro numerical model is used to investigate the effects of boundary conditions, bar curtailment and beam depth on the structural behaviour of RC assemblages. The results suggest that beam depth affects the fixed-end rotation contributed by bar slip, and further significantly influences the development of catenary action.
URI: https://hdl.handle.net/10356/103372
http://hdl.handle.net/10220/24474
DOI: 10.1680/macr.14.00100
Schools: School of Civil and Environmental Engineering 
Rights: © 2014 Thomas Telford. This paper was published in Magazine of Concrete Research and is made available as an electronic reprint (preprint) with permission of Thomas Telford. The paper can be found at the following official DOI: [http://dx.doi.org/10.1680/macr.14.00100]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
Numerical analysis with joint model on RC assemblages subjected to progressive collapse.pdf1.61 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

28
Updated on Mar 28, 2024

Web of ScienceTM
Citations 20

22
Updated on Oct 25, 2023

Page view(s) 10

811
Updated on Mar 28, 2024

Download(s) 20

291
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.