Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/103493
Title: The microbial community of a terrestrial anoxic inter-tidal zone : a model for laboratory-based studies of potentially habitable ancient lacustrine systems on mars
Authors: Curtis-Harper, Elliot
Pearson, Victoria K.
Summers, Stephen
Bridges, John C.
Schwenzer, Susanne P.
Olsson-Francis, Karen
Keywords: DRNTU::Science::Biological sciences
Mars
Lacustrine System
Issue Date: 2018
Source: Curtis-Harper, E., Pearson, V. K., Summers, S., Bridges, J. C., Schwenzer, S. P., & Olsson-Francis, K. (2018). The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars. Microorganisms, 6(3), 61-. doi:10.3390/microorganisms6030061
Series/Report no.: Microorganisms
Abstract: Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21′15.40″ N, 3°10′24.95″ W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments.
URI: https://hdl.handle.net/10356/103493
http://hdl.handle.net/10220/47337
ISSN: 2076-2607
DOI: 10.3390/microorganisms6030061
Rights: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCELSE Journal Articles

Files in This Item:
File Description SizeFormat 
The Microbial Community of a Terrestrial Anoxic.pdf2.61 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

6
Updated on Jan 19, 2023

Web of ScienceTM
Citations 20

6
Updated on Jan 31, 2023

Page view(s)

232
Updated on Feb 5, 2023

Download(s) 50

58
Updated on Feb 5, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.