Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/103493
Title: | The microbial community of a terrestrial anoxic inter-tidal zone : a model for laboratory-based studies of potentially habitable ancient lacustrine systems on mars | Authors: | Curtis-Harper, Elliot Pearson, Victoria K. Summers, Stephen Bridges, John C. Schwenzer, Susanne P. Olsson-Francis, Karen |
Keywords: | DRNTU::Science::Biological sciences Mars Lacustrine System |
Issue Date: | 2018 | Source: | Curtis-Harper, E., Pearson, V. K., Summers, S., Bridges, J. C., Schwenzer, S. P., & Olsson-Francis, K. (2018). The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars. Microorganisms, 6(3), 61-. doi:10.3390/microorganisms6030061 | Series/Report no.: | Microorganisms | Abstract: | Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21′15.40″ N, 3°10′24.95″ W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments. | URI: | https://hdl.handle.net/10356/103493 http://hdl.handle.net/10220/47337 |
ISSN: | 2076-2607 | DOI: | 10.3390/microorganisms6030061 | Rights: | © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCELSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The Microbial Community of a Terrestrial Anoxic.pdf | 2.61 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
6
Updated on Jan 19, 2023
Web of ScienceTM
Citations
20
6
Updated on Jan 31, 2023
Page view(s)
232
Updated on Feb 5, 2023
Download(s) 50
58
Updated on Feb 5, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.