Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHao, Piliangen
dc.contributor.authorRen, Yanen
dc.contributor.authorSze, Siu Kwanen
dc.contributor.authorTam, James P.en
dc.identifier.citationHao, P., Ren, Y., Tam, J. P., & Sze, S. K. (2013). Correction of Errors in Tandem Mass Spectrum Extraction Enhances Phosphopeptide Identification. Journal of Proteome Research, 12(12), 5548-5557.en
dc.description.abstractThe tandem mass spectrum extraction of phosphopeptides is more difficult and error-prone than that of unmodified peptides due to their lower abundance, lower ionization efficiency, the cofragmentation with other high-abundance peptides, and the use of MS3 on MS2 fragments with neutral losses. However, there are still no established methods to evaluate its correctness. Here we propose to identify and correct these errors via the combinatorial use of multiple spectrum extraction tools. We evaluated five free and two commercial extraction tools using Mascot and phosphoproteomics raw data from LTQ FT Ultra, in which RawXtract identified the highest number of unique phosphopeptides (peptide expectation value <0.05). Surprisingly, ProteoWizzard (v. 3.0.3476) extracted wrong precursor mass for most MS3 spectra. Comparison of the top three free extraction tools showed that only 54% of the identified spectra were identified consistently from all three tools, indicating that some errors might happen during spectrum extraction. Manual check of 258 spectra not identified from all three tools revealed 405 errors of spectrum extraction with 7.4% in selecting wrong precursor charge, 50.6% in selecting wrong precursor mass, and 42.1% in exporting MS/MS fragments. We then corrected the errors by selecting the best extracted MGF file for each spectrum among the three tools for another database search. With the errors corrected, it results in the 22.4 and 12.2% increase in spectrum matches and unique peptide identification, respectively, compared with the best single method. Correction of errors in spectrum extraction improves both the sensitivity and confidence of phosphopeptide identification. Data analysis on nonphosphopeptide spectra indicates that this strategy applies to unmodified peptides as well. The identification of errors in spectrum extraction will promote the improvement of spectrum extraction tools in future.en
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)en
dc.relation.ispartofseriesJournal of proteome researchen
dc.rights© 2013 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Proteome Research, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].en
dc.subjectDRNTU::Science::Biological sciencesen
dc.titleCorrection of errors in tandem mass spectrum extraction enhances phosphopeptide identificationen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Biological Sciencesen
dc.contributor.organizationSingapore Centre for Environmental Life Sciences Engineeringen
dc.description.versionAccepted versionen
item.fulltextWith Fulltext-
Appears in Collections:SBS Journal Articles
Files in This Item:
File Description SizeFormat 
MS3_Extraction.pdf918.05 kBAdobe PDFThumbnail

Citations 20

Updated on Jul 7, 2022

Citations 20

Updated on Jul 7, 2022

Page view(s) 50

Updated on Aug 12, 2022

Download(s) 20

Updated on Aug 12, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.