Please use this identifier to cite or link to this item:
Title: Digital holography to light field
Authors: Zuo, Chao
Asundi, Anand Krishna
Keywords: DRNTU::Science::Physics::Optics and light
Issue Date: 2014
Source: Asundi, A., & Zuo, C. (2014). Digital holography to light field. SPIE Proceedings, 9132, 91320U-.
Abstract: Holography uses wave (physical) optical principles of interference and diffraction to record and display images. Interference allows us to record the amplitude and phase of the optical wave emanating from an object on a film or recording medium and diffraction enables us to see this wave-field, i.e. the amplitude and phase of the object. Visually this corresponds to both perspective and depth information being reconstructed as in the original scene. Digital Holography has enabled quantification of phase which in some applications provides meaningful engineering parameters. There is growing interest in reconstructing this wavefield without interference. Thus the non-interferometric Transport of Intensity Equation (TIE) method is gaining increased research, which uses two or more defocused images to reconstruct the phase. Due to its non-interferometric nature, TIE relaxes the stringent beam-coherence requirements for interferometry, extending its applications to various optical fields with arbitrary spatial and temporal coherence. The alternate school of thought emerges from the computer science community primarily deals with ray optics. In a normal imaging system all rays emerging from an object point into are focused to a conjugate image point. Information of ray direction is lost and thus the perspective and depth information. A light field image is one that has information of both amplitude and direction of rays fanning from any object point and thus provides perspective (or what could be termed as phase) of the object wave as well. It would thus be possible to extract phase as we know it from this albeit for a coherent illumination case.
DOI: 10.1117/12.2059775
Rights: © 2014 SPIE. This paper was published in SPIE Proceedings and is made available as an electronic reprint (preprint) with permission of SPIE. The paper can be found at the following official DOI:  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Conference Papers

Files in This Item:
File Description SizeFormat 
91320U.pdf1.98 MBAdobe PDFThumbnail

Page view(s)

Updated on Jan 27, 2021

Download(s) 10

Updated on Jan 27, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.