Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/104475
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tjuawinata, Ivan | en |
dc.contributor.author | Huang, Tao | en |
dc.contributor.author | Wu, Hongjun | en |
dc.date.accessioned | 2019-09-25T05:41:25Z | en |
dc.date.accessioned | 2019-12-06T21:33:37Z | - |
dc.date.available | 2019-09-25T05:41:25Z | en |
dc.date.available | 2019-12-06T21:33:37Z | - |
dc.date.issued | 2017 | en |
dc.identifier.citation | Tjuawinata I., Huang T., & Wu H. (2017). Improved differential cryptanalysis on Generalized Feistel Schemes. In: Patra A., Smart N. (eds) Progress in Cryptology - INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science, vol 10698. Springer, Cham. doi:10.1007/978-3-319-71667-1_16 | en |
dc.identifier.uri | https://hdl.handle.net/10356/104475 | - |
dc.description.abstract | Nachef et al. used differential cryptanalysis to study four types of Generalized Feistel Scheme (GFS). They gave the lower bound of maximum number of rounds that is indistinguishable from a random permutation. In this paper, we study the security of several types of GFS by exploiting the asymmetric property. We show that better lower bounds can be achieved for the Type-1 GFS, Type-3 GFS and Alternating Feistel Scheme. Furthermore, we give the first general results regarding to the lower bound of the Unbalanced Feistel Scheme. | en |
dc.format.extent | 24 p. | en |
dc.language.iso | en | en |
dc.rights | This is a post-peer-review, pre-copyedit version of an article published in Progress in Cryptology - INDOCRYPT 2017. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-71667-1_16 | en |
dc.subject | Generalized Feistel Network | en |
dc.subject | Science::Physics | en |
dc.subject | Differential Analysis | en |
dc.title | Improved differential cryptanalysis on Generalized Feistel Schemes | en |
dc.type | Conference Paper | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en |
dc.contributor.conference | Progress in Cryptology - INDOCRYPT 2017 | en |
dc.identifier.doi | 10.1007/978-3-319-71667-1_16 | en |
dc.description.version | Accepted version | en |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | SPMS Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Improved differential cryptanalysis on generalized feistel schemes.pdf | 607.27 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
3
Updated on Mar 19, 2023
Web of ScienceTM
Citations
50
3
Updated on Mar 14, 2023
Page view(s)
298
Updated on Mar 26, 2023
Download(s) 50
85
Updated on Mar 26, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.