Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/104875
Title: | Genuinely multipoint temporal quantum correlations and universal measurement-based quantum computing | Authors: | Markiewicz, Marcin Przysiężna, Anna Brierley, Stephen Paterek, Tomasz |
Keywords: | DRNTU::Science::Physics | Issue Date: | 2014 | Source: | Markiewicz, M., Przysiężna, A., Brierley, S., & Paterek, T. (2014). Genuinely multipoint temporal quantum correlations and universal measurement-based quantum computing. Physical Review A, 89(6), 062319-. | Series/Report no.: | Physical review A | Abstract: | We introduce a constructive procedure that maps all spatial correlations of a broad class of d -level states of N parties into temporal correlations between general d -outcome quantum measurements performed on a single d -level system. This allows us to present temporal phenomena analogous to genuinely multipartite nonlocal phenomena, such as Greenberger-Horne-Zeilinger correlations, which do not exist if only projective measurements on a single qubit are considered. The map is applied to certain lattice systems in order to replace one spatial dimension with a temporal one, without affecting measured correlations. We use this map to show how repeated application of a one-dimensional (1D) cluster gate leads to universal one-way quantum computing when supplemented with general two-outcome quantum measurements. In this way, we recover a temporal version of measurement-based quantum computing performed on a sequentially recreated 1D cluster. | URI: | https://hdl.handle.net/10356/104875 http://hdl.handle.net/10220/20305 |
ISSN: | 1050-2947 | DOI: | 10.1103/PhysRevA.89.062319 | Schools: | School of Physical and Mathematical Sciences | Rights: | © 2014 American Physical Society. This paper was published in Physical Review A and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: http://dx.doi.org/10.1103/PhysRevA.89.062319. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PhysRevA.89.062319.pdf | 676.47 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
11
Updated on Mar 18, 2025
Web of ScienceTM
Citations
20
10
Updated on Oct 30, 2023
Page view(s) 20
730
Updated on Mar 18, 2025
Download(s) 20
241
Updated on Mar 18, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.