Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/105128
Title: Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods : dramatic influences on heavy-metal-ion adsorption
Authors: Webster, Richard D.
Pumera, Martin
Moo, James Guo Sheng
Khezri, Bahareh
Keywords: DRNTU::Science::Chemistry::Biochemistry::Water analysis
Issue Date: 2014
Source: Moo, J. G. S., Khezri, B., Webster, R. D., & Pumera, M. (2014). Graphene oxides prepared by Hummers’, Hofmann’s, and Staudenmaier’s methods : dramatic influences on heavy-metal-ion adsorption. ChemPhysChem, 15(14), 2922–2929.
Series/Report no.: ChemPhysChem
Abstract: Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers’ (HU), Hofmann’s (HO) and Staudenmaier’s (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure–function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both PbII and CdII is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up.
URI: https://hdl.handle.net/10356/105128
http://hdl.handle.net/10220/20693
ISSN: 1439-4235
DOI: 10.1002/cphc.201402279
Rights: © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.