Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/105133
Title: Nanosensors for regenerative medicine
Authors: Yeo, David C.
Wiraja, Christian
Mantalaris, Athanasios (Sakis)
Xu, Chenjie
Keywords: DRNTU::Engineering::Nanotechnology
Issue Date: 2014
Source: Yeo, D. C., Wiraja, C., Mantalaris, A., & Xu, C. (2014). Nanosensors for regenerative medicine. Journal of biomedical nanotechnology, 10(10), 2722-2746.
Series/Report no.: Journal of biomedical nanotechnology
Abstract: Assessing biodistribution, fate, and function of implanted therapeutic cells in preclinical animal experiments is critical to realize safe, effective and efficient treatments for subsequent implementation within the clinic. Currently, tissue histology, the most prevalent analytical technique to meet this need, is limited by end-point analysis, high cost and long preparation time. Moreover, it is disadvantaged by an inability to monitor in real-time, qualitative interpretation and ethical issues arising from animal sacrifice. While genetic engineering techniques allow cells to express molecules with detectable signals (e.g., fluorescence, luminescence, T1 (spin–lattice)/T2 (spin–spin) contrast in magnetic resonance imaging, radionuclide), concerns arise regarding technical complexity, high-cost of genetic manipulation, as well as mutagenic cell dysfunction. Alternatively, cells can be labeled using nanoparticle-sensors—nanosensors that emit signals to identify cell location, status and function in a simple, cost-effective, and non-genetic manner. This review article provides the definition, classification, evolution, and applications of nanosensor technology and focuses on how they can be utilized in regenerative medicine. Several examples of direct applications include: (1) monitoring post-transplantation cell behavior, (2) revealing host response following foreign biomaterial implantation, and (3) optimization of cell bioprocess operating conditions. Incorporating nanosensors is expected to expedite the development of cell-based regenerative medicine therapeutics.
URI: https://hdl.handle.net/10356/105133
http://hdl.handle.net/10220/20457
ISSN: 1550-7033
DOI: 10.1166/jbn.2014.1992
Rights: © 2014 American Scientific Publishers.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations

10
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

10
checked on Oct 17, 2020

Page view(s)

421
checked on Oct 21, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.