Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/105198
Title: Nitrogen-doped graphene/carbon nanotube hybrids : in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction
Authors: Tian, Gui-Li
Zhao, Meng-Qiang
Yu, Dingshan
Kong, Xiang-Yi
Huang, Jia-Qi
Zhang, Qiang
Wei, Fei
Keywords: DRNTU::Science::Chemistry::Organic chemistry::Carbanions
Issue Date: 2014
Source: Tian, G.-L., Zhao, M.-Q., Yu, D., Kong, X.-Y., Huang, J.-Q., Zhang, Q., et al. (2014). Nitrogen-doped graphene/carbon nanotube hybrids : in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small, 10(11), 2251-2259.
Series/Report no.: Small
Abstract: There is a growing interest in oxygen electrode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as they play a key role in a wide range of renewable energy technologies such as fuel cells, metal-air batteries, and water splitting. Nevertheless, the development of highly-active bifunctional catalysts at low cost for both ORR and OER still remains a huge challenge. Herein, we report a new N-doped graphene/single-walled carbon nanotube (SWCNT) hybrid (NGSH) material as an efficient noble-metal-free bifunctional electrocatalyst for both ORR and OER. NGSHs were fabricated by in situ doping during chemical vapor deposition growth on layered double hydroxide derived bifunctional catalysts. Our one-step approach not only provides simultaneous growth of graphene and SWCNTs, leading to the formation of three dimensional interconnected network, but also brings the intrinsic dispersion of graphene and carbon nanotubes and the dispersion of N-containing functional groups within a highly conductive scaffold. Thus, the NGSHs possess a large specific surface area of 812.9 m2 g−1 and high electrical conductivity of 53.8 S cm−1. Despite of relatively low nitrogen content (0.53 at%), the NGSHs demonstrate a high ORR activity, much superior to two constituent components and even comparable to the commercial 20 wt% Pt/C catalysts with much better durability and resistance to crossover effect. The same hybrid material also presents high catalytic activity towards OER, rendering them high-performance cheap catalysts for both ORR and OER. Our result opens up new avenues for energy conversion technologies based on earth-abundant, scalable, noble-metal-free catalysts.
URI: https://hdl.handle.net/10356/105198
http://hdl.handle.net/10220/20801
ISSN: 1613-6810
DOI: 10.1002/smll.201303715
Schools: School of Chemical and Biomedical Engineering 
Rights: © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations 1

559
Updated on Mar 19, 2024

Web of ScienceTM
Citations 1

536
Updated on Oct 27, 2023

Page view(s)

388
Updated on Mar 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.