Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/105942
Title: | Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement | Authors: | Munirah Ismail Zhu, Guangyu Nakao, Masakazu Yuan, Qi Yeo, Joon Hock |
Keywords: | DRNTU::Engineering::Mechanical engineering Aortic Valve Prosthetics |
Issue Date: | 2019 | Source: | Zhu, G., Munirah Ismail, Nakao, M., Yuan, Q., & Yeo, J. H. (2019). Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement. PLOS ONE, 14(1), e0210780-. doi:10.1371/journal.pone.0210780 | Series/Report no.: | PLOS ONE | Abstract: | The expanded polytetrafluoroethylene (ePTFE) heart valve can serve as a viable option for prosthetic aortic valve. In this study, an ePTFE bi-leaflet valve design for aortic valve replacement (AVR) is presented, and the performance of the proposed valve was assessed numerically and experimentally. The valve was designed using CAE software. The dynamic behavior of the newly designed bi-leaflet valve under time-varying physiological pressure loading was first investigated by using commercial finite element code. Then, in-vitro tests were performed to validate the simulation and to assess the hemodynamic performance of the proposed design. A tri-leaflet ePTFE valve was tested in-vitro under the same conditions as a reference. The maximum leaflet coaptation area of the bi-leaflet valve during diastole was 216.3 mm2. When fully closed, no leakage gap was observed and the free edges of the molded valve formed S-shaped lines. The maximum Von Mises stress during a full cardiac cycle was 4.20 MPa. The dynamic performance of the bi-leaflet valve was validated by the in-vitro test under physiological aortic pressure pulse. The effective orifice area (EOA), mean pressure gradient, regurgitant volume, leakage volume and energy loss of the proposed valve were 3.14 cm2, 8.74 mmHg, 5.93 ml/beat, 1.55 ml/beat and 98.99 mJ, respectively. This study reports a novel bi-leaflet valve design for AVR. The performance of the proposed valve was numerically and experimentally assessed. Compared with the reference valve, the proposed design exhibited better structural and hemodynamic performances, which improved valve competency. Moreover, the performance of the bi-leaflet design is comparable to commercialized valves available on the market. The results of the present study provide a viable option for the future clinical applications. | URI: | https://hdl.handle.net/10356/105942 http://hdl.handle.net/10220/48806 |
DOI: | 10.1371/journal.pone.0210780 | Schools: | School of Mechanical and Aerospace Engineering | Rights: | © 2019 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | MAE Journal Articles |
Files in This Item:
SCOPUSTM
Citations
20
13
Updated on Apr 21, 2025
Web of ScienceTM
Citations
20
8
Updated on Oct 30, 2023
Page view(s) 50
646
Updated on May 7, 2025
Download(s) 50
102
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.