Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/106094
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalikiosis, R.D.en
dc.contributor.authorMatolcsi, M.en
dc.contributor.authorRuzsa, I.Z.en
dc.date.accessioned2013-11-29T06:28:33Zen
dc.date.accessioned2019-12-06T22:04:27Z-
dc.date.available2013-11-29T06:28:33Zen
dc.date.available2019-12-06T22:04:27Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationMalikiosis, R., Matolcsi, M., & Ruzsa, I. (2013). A note on the pyjama problem. European journal of combinatorics, 34(7), 1071-1077.en
dc.identifier.issn0195-6698en
dc.identifier.urihttps://hdl.handle.net/10356/106094-
dc.description.abstractThis note concerns the so-called pyjama problem, whether it is possible to cover the plane by finitely many rotations of vertical strips of half-width ε. We first prove that there exist no periodic coverings for ε<1/3. Then we describe an explicit (non-periodic) construction for ε=1/3 - 1/48. Finally, we use a compactness argument combined with some ideas from additive combinatorics to show that finite coverings exist for all ε>1/5. The question whether ε can be arbitrarily small remains open.en
dc.language.isoenen
dc.relation.ispartofseriesEuropean journal of combinatoricsen
dc.subjectDRNTU::Science::Physicsen
dc.titleA note on the pyjama problemen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1016/j.ejc.2013.03.001en
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Mar 30, 2025

Web of ScienceTM
Citations 50

1
Updated on Oct 27, 2023

Page view(s) 50

500
Updated on Apr 24, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.