Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaadat, Somayeen
dc.contributor.authorZhu, Jixinen
dc.contributor.authorSim, Daohaoen
dc.contributor.authorHng, Huey Hoonen
dc.contributor.authorYazami, Rachiden
dc.contributor.authorYan, Qingyuen
dc.identifier.citationSaadat, S., Zhu, J., Sim, D., Hng, H. H., Yazami, R., & Yan, Q. (2013). Coaxial Fe3O4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodes. Journal of materials chemistry A, 1(30), 8672-8678.en
dc.description.abstractWe report the facile, template free electrochemical fabrication of hierarchical Fe3O4/CuO hybrid wires, grown directly on a copper substrate. The electrodes are produced by the electrochemical deposition of Fe3O4 on CuO nanoneedle arrays, fabricated by anodization. The Fe3O4/CuO hybrid anodes displayed ultrafast charging/discharging properties and high rate capabilities, superior to those of their individual building blocks Fe3O4 and CuO. For example, at a current density of 820 mA g−1, the Fe3O4/CuO hybrid wires delivered high reversible specific capacity, good cycling stability (delivering 953 mA h g−1 discharge capacity with 98.7% Coulombic efficiency after 100 cycles) and excellent rate capability (319 mA h g−1 at 8200 mA g−1). The excellent performance of the Fe3O4/CuO hybrids comes from the intelligent integration of the two compatible components into unique hierarchical architectures with a high specific capacity, with one-dimensional CuO nanoneedle arrays electrochemically coated with mesoporous Fe3O4 nanocubes.en
dc.relation.ispartofseriesJournal of materials chemistry Aen
dc.titleCoaxial Fe3O4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
dc.contributor.organizationTUM CREATE Centre for Electromobilityen
dc.contributor.researchEnergy Research Institute @NTUen
item.fulltextNo Fulltext-
Appears in Collections:ERI@N Journal Articles
MSE Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.