Please use this identifier to cite or link to this item:
Title: Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers
Authors: Guerette, Paul A.
Z. Tay, Gavin
Hoon, Shawn
Loke, Jun Jie
Hermawan, Arif F.
Schmitt, Clemens N. Z.
Harrington, Matthew J.
Masic, Admir
Karunaratne, Angelo
Gupta, Himadri S.
Tan, Koh Siang
Schwaighofer, Andreas
Nowak, Christoph
Miserez, Ali
Keywords: DRNTU::Engineering::Materials::Biomaterials
Issue Date: 2014
Source: Guerette, P. A., Tay, G. Z., Hoon, S., Loke, J. J., Hermawan, A. F., Schmitt, C. N. Z., et al. (2014). Integrative and comparative analysis of coiled-coil based marine snail egg cases : a model for biomimetic elastomers. Biomaterials science, 2(5), 710-722.
Series/Report no.: Biomaterials science
Abstract: Integrative and comparative analyses of biomaterials systems offer the potential to reveal conserved elements that are essential for mechanical function. The approach also affords the opportunity to identify variation in designs at multiple length scales, enabling the delineation of a range of parameters for creating precisely tuned biomimetic materials. We investigated the molecular design and structural hierarchy of elastomeric egg capsules from the marine snail Pugilina cochlidium (family Melongenidae) and compared these data with all available published studies in order to infer the structure–property relationships of the egg case from the molecular to the macroscopic scale. While mechanical similarities had previously been observed for two other marine melongenid snails, Busycotypus canaliculatus and Busycon carica, B. canaliculatus was the only species for which detailed molecular and nanostructural data were available. Egg capsules from P. cochlidium were found to exhibit mechanical properties and shock absorbing potential that was similar to B. canaliculatus. The two species also displayed similarity in hierarchical fibril bundling and a sub-micron staggering of 100–105 nm within filaments, as shown by atomic force microscopy and small angle X-ray diffraction. In situ Raman micro spectroscopy indicated that P. cochlidium egg cases undergo a stress-induced coiled-coil to extended β-strand structural transformation that is very similar to that of B. canaliculatus. These observations supported the view that these structural and hierarchical elements are essential for egg case function. Comparative analysis of the primary amino acid sequences and structural predictions for all known egg case proteins suggested that while the proteins all contain sequences prone to adopt α-helical structures, the predicted location of coiled-coil domains and stutter perturbations varied within and between species. Despite these differences, mixtures of denatured native egg case proteins readily re-folded in citrate–phosphate assembly buffer into α-helix rich, coiled-coil based oligomers, as determined by attenuated total reflection Fourier transform infrared spectroscopy, circular dichroism and MALDI-TOF. It is concluded that both conserved and divergent designs in marine snail egg cases offer inspiration for the engineering of biomimetic elastomeric materials with a unique capability for mechanical energy absorption.
ISSN: 2047-4830
DOI: 10.1039/c3bm60264h
Schools: School of Materials Science & Engineering 
School of Biological Sciences 
Research Centres: Energy Research Institute @ NTU (ERI@N) 
Rights: © 2014 The Royal Society of Chemistry.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:ERI@N Journal Articles
MSE Journal Articles
SBS Journal Articles

Citations 50

Updated on Jun 22, 2024

Web of ScienceTM
Citations 20

Updated on Oct 24, 2023

Page view(s) 20

Updated on Jun 19, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.