Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/106501
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Muoi, Pham Quy | en |
dc.contributor.author | Hào, Dinh Nho | en |
dc.contributor.author | Sahoo, Sujit Kumar | en |
dc.contributor.author | Tang, Dongliang | en |
dc.contributor.author | Cong, Nguyen Huu | en |
dc.contributor.author | Dang, Cuong | en |
dc.date.accessioned | 2019-04-01T07:37:03Z | en |
dc.date.accessioned | 2019-12-06T22:13:04Z | - |
dc.date.available | 2019-04-01T07:37:03Z | en |
dc.date.available | 2019-12-06T22:13:04Z | - |
dc.date.issued | 2018 | en |
dc.identifier.citation | Muoi, P. Q., Hào, D. N., Sahoo, S. K., Tang, D., Cong, N. H., & Dang, C. (2018). Inverse problems with nonnegative and sparse solutions: algorithms and application to the phase retrieval problem. Inverse Problems, 34(5), 055007-. doi:10.1088/1361-6420/aab6c9 | en |
dc.identifier.issn | 0266-5611 | en |
dc.identifier.uri | https://hdl.handle.net/10356/106501 | - |
dc.description.abstract | In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented. | en |
dc.description.sponsorship | NMRC (Natl Medical Research Council, S’pore) | en |
dc.description.sponsorship | MOH (Min. of Health, S’pore) | en |
dc.description.sponsorship | MOE (Min. of Education, S’pore) | en |
dc.format.extent | 16 p. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Inverse Problems | en |
dc.rights | © 2018 IOP Publishing Ltd. All rights reserved. This is an author-created, un-copyedited version of an article accepted for publication in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at https://doi.org/10.1088/1361-6420/aab6c9. | en |
dc.subject | Gradient-type Algorithm | en |
dc.subject | Inverse Problems | en |
dc.subject | DRNTU::Engineering::Electrical and electronic engineering | en |
dc.title | Inverse problems with nonnegative and sparse solutions : algorithms and application to the phase retrieval problem | en |
dc.type | Journal Article | en |
dc.contributor.school | School of Electrical and Electronic Engineering | en |
dc.contributor.research | The Photonics Institute | en |
dc.contributor.research | Centre for OptoElectronics and Biophotonics | en |
dc.identifier.doi | 10.1088/1361-6420/aab6c9 | en |
dc.description.version | Accepted version | en |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
Appears in Collections: | EEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Algorithms_for_Regularization_for_Inverse_Problems_with_NSS-R2.pdf | 2.54 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
2
Updated on Jul 24, 2020
PublonsTM
Citations
2
Updated on Feb 27, 2021
Page view(s)
76
Updated on Feb 28, 2021
Download(s) 50
33
Updated on Feb 28, 2021
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.