Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/106563
Title: | The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing | Authors: | Zhou, Haiqing Yu, Fang Chen, Minjiang Qiu, Caiyu Yang, Huaichao Wang, Gang Yu, Ting Sun, Lianfeng |
Keywords: | DRNTU::Science::Physics | Issue Date: | 2013 | Source: | Zhou, H., Yu, F., Chen, M., Qiu, C., Yang, H., Wang, G., et al. (2013). The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing. Carbon, 52, 379-387. | Series/Report no.: | Carbon | Abstract: | The shape transformation of gold directly on graphene has been well studied by thermally annealing gold-deposited graphene samples at the temperature range from 600 to 800 °C. We find that few-layer graphene can be served as a platform to transform a gold film into mainly hexagonal gold nanoparticles (AuNPs) at 600 or 700 °C, or coexistence of hexagonal and triangular AuNPs at 800 °C. Especially, the size and density of these AuNPs are dependent on the number of graphene layers, indicating the strong relationship between gold shape transformation and the number of graphene layers on the substrate. We propose that annealing-induced growth of gold islands and the layer-dependent interactions among Au and n-layer graphene are the two main causes for this shape transformation. Meanwhile, Raman enhancing effects of these AuNPs are also investigated. These faceted AuNPs exhibit excellent SERS effects on Raman spectra of few-layer graphene with the enhancement factors up to several hundreds. Combined with n-layer graphenes, these faceted AuNPs can be used as graphene-based SERS substrates for increasing Raman signals of adsorbed rhodamine 6G molecules with a larger scale than those based on fresh graphenes. | URI: | https://hdl.handle.net/10356/106563 http://hdl.handle.net/10220/17447 |
ISSN: | 0008-6223 | DOI: | 10.1016/j.carbon.2012.09.048 | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | ERI@N Journal Articles SPMS Journal Articles |
SCOPUSTM
Citations
10
33
Updated on Mar 18, 2023
Web of ScienceTM
Citations
10
32
Updated on Mar 22, 2023
Page view(s) 50
547
Updated on Mar 27, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.