Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/106838
Title: A simple model for predicting the pressure drop and film thickness of non-Newtonian annular flows in horizontal pipes
Authors: Li, Haiwang
Wong, Teck Neng
Skote, Martin
Duan, Fei
Issue Date: 2013
Source: Li, H., Wong, T. N., Skote, M., & Duan, F. (2013). A simple model for predicting the pressure drop and film thickness of non-Newtonian annular flows in horizontal pipes. Chemical Engineering Science, 102,121-128.
Series/Report no.: Chemical engineering science
Abstract: A model of two-phase non-Newtonian horizontal annular flows, which predicts film thickness and pressure gradient from flowrates only, is presented. In the model, the gas and non-Newtonian liquid flows are calculated separately based on the independent governing equations. The shear stress balance at the gas–liquid interface is calculated in order to link two phases together. The non-Newtonian fluid is assumed as a power-law shear-thinning liquid. The logarithmic velocity distribution is chosen to calculate the turbulent velocity profile in the gas core. The influences of entrainment and aeration are included in the model. The pressure drop, film thickness, void fraction, the frictional multiplier, and Lockhart–Martinelli parameter are predicted. The analytical model is compared with the published experimental investigations, and the results show that the model can predict the film thickness and pressure gradient simultaneously based on the flowrates of liquid and gas. The frictional multiplier and Lockhart–Martinelli parameter are calculated at the same time, and the predicted values are comparable with the experimental data. The difference between the analytical model and the experiments is lower than 10%.
URI: https://hdl.handle.net/10356/106838
http://hdl.handle.net/10220/17776
ISSN: 0009-2509
DOI: 10.1016/j.ces.2013.07.046
Rights: © 2013 Elsevier Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Chemical Engineering Science, Elsevier Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.ces.2013.07.046].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

SCOPUSTM   
Citations 20

11
Updated on Dec 1, 2022

Web of ScienceTM
Citations 20

9
Updated on Dec 4, 2022

Page view(s) 10

678
Updated on Dec 6, 2022

Download(s) 10

352
Updated on Dec 6, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.