Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/106855
Title: Effect of the surface charge of monodisperse particulate foulants on cake formation
Authors: Han, Qi
Li, Weiyi
Trinh, Thien An
Fane, Anthony G.
Chew, Jia Wei
Keywords: Membrane Fouling
Surface Charge
Engineering::Environmental engineering::Water treatment
Issue Date: 2018
Source: Han, Q., Li, W., Trinh, T. A., Fane, A. G., & Chew, J. W. (2018). Effect of the surface charge of monodisperse particulate foulants on cake formation. Journal of Membrane Science, 548, 108-116. doi:10.1016/j.memsci.2017.11.017
Series/Report no.: Journal of Membrane Science
Abstract: In microfiltration and ultrafiltration, particulate foulants are inevitably deposited on the membrane surface, forming a cake whose structure and behaviour play crucial roles in the subsequent filterability of the suspensions. This study investigated the impact of fouling by three types of latex particulate foulants, which were of the same size (3 µm) but with different surface charges. Surprisingly, although the positively charged aminated latex was expected to perform the worst in the flux-decline experiments due to attractive electrostatic interaction with the negatively charged membrane, this latex displayed the best performance relative to the two negatively charged latex. To understand these counter-intuitive results, a novel network model (Han et al., 2017) [1] and three-dimensional (3D) optical coherence tomography (OCT) image analysis (Li et al., 2016) [2] were employed to reveal the underlying reasons for the different fouling behaviors. Two mechanisms were found to contribute to the worse performance of the negatively charged latex. Firstly, these particles tended to deposit on the pore rather than non-pore region of the membrane due to the repulsive particle-membrane electrostatic interactions, which led to a more complete pore blockage and thereby greater initial cake resistance. Secondly, these particles had a greater tendency to cluster and deposit on other deposited latex due to similarly repulsive particle-membrane and particle-particle interactions, which led to a more inhomogeneous cake and thereby greater specific cake resistance.
URI: https://hdl.handle.net/10356/106855
http://hdl.handle.net/10220/49684
ISSN: 0376-7388
DOI: 10.1016/j.memsci.2017.11.017
Rights: © 2018 Elsevier. All rights reserved. This paper was published in Journal of Membrane Science and is made available with permission of Elsevier.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:IGS Journal Articles
NEWRI Journal Articles
SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
HQ2018.pdf1.13 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.