Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/107230
Title: A simple and local method for computing quasi-conformal map on 3D surfaces
Authors: Zhang, Minqi
He, Ying
Keywords: DRNTU::Engineering::Computer science and engineering::Computer applications::Computer-aided engineering
Issue Date: 2013
Source: Zhang, M., & He, Y. (2013). A simple and local method for computing quasi-conformal map on 3D surfaces. Computer-Aided Design, in press.
Series/Report no.: Computer-aided design
Abstract: Quasi-conformal maps have bounded conformal distortion, and are the natural extension of the conformal maps. The existing techniques to compute the quasi-conformal map require a global coordinate system; thus, they are limited to models of simple topological types, such as genus-0 or 1 surfaces, for which one can obtain the global coordinates by the global parameterization. This paper presents a simple yet effective technique for computing a quasi-conformal map on surfaces of non-trivial topology. Our method extends the quasi-conformal iteration method (Lui et al., 2012) [8] from the complex plane to the manifold setting. It requires neither numerical solver nor the global coordinate system, thus, is easy to implement. Moreover, thanks to its simple and parallel structure, our method is well suited for parallel computing. Experimental results on 3D models of various topological types demonstrate the efficacy of our technique.
URI: https://hdl.handle.net/10356/107230
http://hdl.handle.net/10220/17810
ISSN: 0010-4485
DOI: 10.1016/j.cad.2013.08.031
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Page view(s) 50

512
Updated on Sep 25, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.