Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/13114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOswal, Manishen
dc.date.accessioned2008-10-20T07:14:24Zen
dc.date.available2008-10-20T07:14:24Zen
dc.date.copyright2008en
dc.date.issued2008en
dc.identifier.citationOswal, M. (2008). Critical investigation of common-mode radiation mechanism from power line communication network. Master’s thesis, Nanyang Technological University, Singapore.en
dc.identifier.urihttps://hdl.handle.net/10356/13114en
dc.description.abstractPower line Communication (PLC) Technology is a convenient and economical alternative for broadband access, multimedia communication and home automation. However the existing PLC technology has issues which are hindering its commercialization and widespread use. One of the main issues is the significant level of CM radiation emitted from the PLC system, which interferes with radio receivers and electronic devices operating in the HF band. Numerous field trials have shown that the emission levels, on the average, are about 20dB higher than the FCC limits. Although these field trials have shown consistent high levels of radiated emissions from the PLC network, no comprehensive in-depth investigation and study have been carried out to understand the fundamental radiation mechanism of the PLC system. In this thesis, the CM current generation over the power line at high frequencies due to CM noise coupling from source, impedance imbalance and asymmetric power lines are investigated in detail so that practical solutions can be proposed to lower the CM current generated over the power line bundle and the radiated emissions from the PLC network. In order to lower CM current and radiated emissions practical solutions were proposed and were implemented on the PLC modem as well as on the electrical loads. Together the solutions provided a reduction in the CM current and in the radiated emissions of about 30 dB especially at high frequency. Such a significant reduction proved that proposed solutions were indeed effective and in future cost-effective versions of the solutions may be implemented to achieve significant reductions in the CM current and in the radiated emissions even in realistic settings.en
dc.format.extent82 p.en
dc.language.isoenen
dc.subjectDRNTU::Engineering::Electrical and electronic engineering::Electric power::Auxiliaries, applications and electric industriesen
dc.titleCritical investigation of common-mode radiation mechanism from power line communication networken
dc.typeThesisen
dc.contributor.supervisorSo Ping Lamen
dc.contributor.supervisorSee Kye Yaken
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen
dc.description.degreeMASTER OF ENGINEERING (EEE)en
dc.identifier.doi10.32657/10356/13114en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Theses
Files in This Item:
File Description SizeFormat 
ManishOswal2008.pdfMain report6.48 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.