Please use this identifier to cite or link to this item:
Title: Development of a method to identify problems of a bilevel nature within different engineering applications
Authors: Ahmad Khairyanto
Keywords: DRNTU::Engineering::Industrial engineering::Engineering management
Issue Date: 2008
Source: Ahmad, K. (2008). Development of a method to identify problems of a bilevel nature within different engineering applications. Master’s thesis, Nanyang Technological University, Singapore.
Abstract: Problems of bilevel nature are inextricably linked to decentralized problems involving multiple decision-making typically with multiple objectives, as are those characterized by Nash equilibrium and variations of the Pareto optimization. These problems are to be found within a wide array of seemingly disparate engineering topics ranging from multi-disciplinary complex system design to multi-echelon decentralized inventory planning. Due to the potential for different forms of decision-making (i.e. cooperative, non-cooperative or sequential) to manifest within problems of decentralized settings, there exists regardless of the field of interest a need to determine the exact nature of such problems with respect to the type of decision-making present. This thesis enquires into the issues associated with identifying the form of decision-making that is in line with the bilevel nature and subsequently describes a method to potentially identify such problems within the decentralized setting. To formally define the identification process of a bilevel nature unfettered to any particular field of interest, a general approach based on complex systems was adopted. Four topics in engineering where bilevel problems have been clearly established, as evident from literature review, namely: i) the multi-disciplinary complex system design, ii) the transport network design, iii) the decentralized capacitated plant selection and, iv) the multi-echelon decentralized inventory planning problems were scrutinized to form the bulk of the area of study. In order to consolidate different events of bilevel problems across the different areas of interest, characteristics defined within the framework of complex systems that are unique to the decision-making process (i.e. Pareto, Nash and Stackelberg/bilevel) were identified. These then form the basis for the method developed to identify the bilevel problem.
DOI: 10.32657/10356/13507
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Theses

Files in This Item:
File Description SizeFormat 
Tm0302311H.pdf701.34 kBAdobe PDFThumbnail

Page view(s) 50

Updated on May 13, 2021

Download(s) 20

Updated on May 13, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.