Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/136962
Title: | Building occupancy modeling using generative adversarial network | Authors: | Chen Zhenghua Jiang Chaoyang |
Keywords: | Engineering::Electrical and electronic engineering | Issue Date: | 2018 | Source: | Chen, Z., & Jiang, C. (2018). Building occupancy modeling using generative adversarial network. Energy and Buildings, 174, 372-379. doi:10.1016/j.enbuild.2018.06.029 | Journal: | Energy and Buildings | Abstract: | Due to the energy crisis and the awareness of sustainable development, the research on energy-efficient buildings has increasingly attracted attention. To achieve this objective, one important factor is to capture occupancy properties for building control systems, which refers to occupancy modeling in buildings. Due to the complexity of building occupancy, previous works try to simplify the modeling with some specific assumptions which may not always hold. In this paper, we propose a Generative Adversarial Network (GAN) framework for building occupancy modeling without any prior assumptions. The GAN approach contains two key components, i.e. a generative network and a discriminative network, which are designed as two powerful neural networks. Owing to the strong generalization capacity of neural networks and the adversarial mechanism in the GAN approach, it is able to accurately model building occupancy. We perform real experiments to verify the effectiveness of the proposed GAN approach and compare it with two state-of-the-art approaches for building occupancy modeling. To quantify the performance of all the models, we define five variables with two evaluation criteria. Results show that our proposed GAN approach can achieve a superior performance. | URI: | https://hdl.handle.net/10356/136962 | ISSN: | 0378-7788 | DOI: | 10.1016/j.enbuild.2018.06.029 | Schools: | School of Electrical and Electronic Engineering | Rights: | © 2018 Elsevier B.V. All rights reserved. This paper was published in Energy and Buildings and is made available with permission of Elsevier B.V. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Building occupancy modeling using generative adversarial network.pdf | 566.23 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
50
Updated on May 6, 2025
Web of ScienceTM
Citations
10
32
Updated on Oct 27, 2023
Page view(s)
312
Updated on May 5, 2025
Download(s) 20
317
Updated on May 5, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.