Please use this identifier to cite or link to this item:
Title: Investigation of the properties of MgO recovered from reject brine obtained from desalination plants
Authors: Dong, Haoliang
Yang, En-Hua
Unluer, Cise
Jin, Fei
Al-Tabbaa, Abir
Keywords: Engineering::Civil engineering
Issue Date: 2018
Source: Dong, H., Yang, E.-H., Unluer, C., Jin, F., & Al-Tabbaa, A. (2018). Investigation of the properties of MgO recovered from reject brine obtained from desalination plants. Journal of Cleaner Production, 196, 100-108. doi:10.1016/j.jclepro.2018.06.032
Journal: Journal of Cleaner Production
Abstract: In addition to its use in various applications such as those in the agriculture, pharmaceutical and refractory industries, MgO is being investigated as a cement binder due to the low calcination temperatures used during its production and its ability to gain strength by absorbing CO2 in construction products. Similar to the dry-route, the reactivity of MgO synthesized from waste water or reject brine via the calcination of the precipitated Mg(OH)2 depends on the calcination conditions. This study investigated the influence of two bases, namely ammonia solution (NH4OH) and sodium hydroxide (NaOH), on the properties of Mg(OH)2 precipitated and consequently the characteristics of MgO produced under different calcination conditions. The energy consumption of the production of reactive MgO from reject brine via the addition of NH4OH and NaOH was also reported and compared with the industrial production routes to assess the sustainability of the production procedure. The final products were characterized in terms of their specific surface area (SSA) and microstructure. Results indicated that Mg(OH)2 synthesized via the addition of NH4OH into reject brine generated a more porous, flake-like morphology than those obtained via the use of NaOH. The SSA and reactivity of NH4OH-based MgO demonstrated a sharper decrease with increasing temperature and duration compared to NaOH-based MgO. Out of all samples, NH4OH-based MgO calcined at 500 °C for 2 h revealed the highest reactivity (SSA of 78.8 m2/g), which was higher than NaOH-based MgO (SSA of 51.4 m2/g).
ISSN: 0959-6526
DOI: 10.1016/j.jclepro.2018.06.032
Schools: School of Civil and Environmental Engineering 
Rights: © 2018 Elsevier Ltd. All rights reserved. This paper was published in Journal of Cleaner Production and is made available with permission of Elsevier Ltd.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Citations 10

Updated on Jun 9, 2024

Web of ScienceTM
Citations 10

Updated on Oct 25, 2023

Page view(s)

Updated on Jun 12, 2024

Download(s) 20

Updated on Jun 12, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.