Please use this identifier to cite or link to this item:
Title: Photochemical synthesis and electronic properties of extended corannulenes with variable fluorination pattern
Authors: Halilovic, Dzeneta
Budanović, Maja
Wong, Zeng R.
Webster, Richard David
Huh, June
Stuparu, Mihaiela C.
Keywords: Science::Chemistry
Issue Date: 2018
Source: Halilovic, D., Budanovic, M., Wong, Z. R., Webster, R. D., Huh, J., & Stuparu. M. C. (2018). Photochemical synthesis and electronic properties of extended corannulenes with variable fluorination pattern. Journal of organic chemistry, 83(7), 3529-3536. doi:10.1021/acs.joc.7b03146
Journal: Journal of organic chemistry
Abstract: The first family of extended and fluorinated corannulenes is prepared through a highly efficient and modular synthetic strategy. In this strategy, corannulene aldehyde could be combined with the fluorine-carrying phosphonium ylides to furnish stilbene-like vinylene precursors. A photochemically induced oxidative cyclization process of these precursors gives rise to the fluorinated and curved polycyclic aromatic hydrocarbons. A UV-vis absorption study shows that aromatic extension results in a bathochromic shift of about 12 nm. Fluorination further shifts the absorption spectrum to the red region, and a maximum shift of about 22 nm is detected for a compound carrying two trifluoromethyl groups. A cyclic and square-wave voltammetry investigation reveals that the extension of the corannulene scaffold increases the reduction potential by 0.11 V. Placement of fluorine or trifluoromethyl groups further enhances the electron affinities. In this regard, the presence of one trifluoromethyl group equals the effect of three aromatic fluorine atoms. Molecules with two trifluoromethyl groups, meanwhile, exhibit the highest reduction potentials of -1.93 and -1.83 V. These values are 0.37 and 0.46 V higher than those of the parental corannulene and demonstrate the utility of the present design concept by efficiently accessing effective electron acceptors based on the buckybowl motif.
ISSN: 0022-3263
DOI: 10.1021/acs.joc.7b03146
Rights: © 2018 American Chemical Society. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.